Generator estimation of Markov jump processes based on incomplete observations nonequidistant in time.

نویسندگان

  • Philipp Metzner
  • Illia Horenko
  • Christof Schütte
چکیده

Markov jump processes can be used to model the effective dynamics of observables in applications ranging from molecular dynamics to finance. In this paper we present a different method which allows the inverse modeling of Markov jump processes based on incomplete observations in time: We consider the case of a given time series of the discretely observed jump process. We show how to compute efficiently the maximum likelihood estimator of its infinitesimal generator and demonstrate in detail that the method allows us to handle observations nonequidistant in time. The method is based on the work of and Bladt and Sørensen [J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67, 395 (2005)] but scales much more favorably than it with the length of the time series and the dimension and size of the state space of the jump process. We illustrate its performance on a toy problem as well as on data arising from simulations of biochemical kinetics of a genetic toggle switch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generator estimation of Markov jump processes

Philipp Metzner, Evelyn Dittmer, Tobias Jahnke, Christof Schütte Institute of Mathematics II, Free University Berlin, Arnimallee 2-6, D-14195 Berlin, Germany (Dated: March 5, 2007) Abstract Recently, two new methods have been presented for the estimation of an infinitesimal generator of a Markov jump process from an incomplete observation. The first approach, introduced by Crommelin and Vanden-...

متن کامل

Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes

We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type process driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of the continuous martingale part. We use a thresholding technique ...

متن کامل

Generator estimation of Markov jump processes q

Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov chains: a quadratic programming ...

متن کامل

Extended Geometric Processes: Semiparametric Estimation and Application to ReliabilityImperfect repair, Markov renewal equation, replacement policy

Lam (2007) introduces a generalization of renewal processes named Geometric processes, where inter-arrival times are independent and identically distributed up to a multiplicative scale parameter, in a geometric fashion. We here envision a more general scaling, not necessar- ily geometric. The corresponding counting process is named Extended Geometric Process (EGP). Semiparametric estimates are...

متن کامل

Data-Based Inference of Generators for Markov Jump Processes Using Convex Optimization

A variational approach to the estimation of generators for Markov jump processes from discretely sampled data is discussed and generalized. In this approach, one first calculates the spectrum of the discrete maximum likelihood estimator for the transition matrix consistent with the discrete data. Then the generator that best matches the spectrum is determined by solving a convex quadratic minim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007